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crystaUites. The second reason is that it is unlikely that 
the disordered molecules in columns are piled up 
regularly to give definite molecular images. The image 
shown in Fig. 11 is obtained with a film of Pt-Phc 
whose thickness is two molecular layers. The molec- 
ular columns are ordered in this film. The well arranged 
crystal parts increase when the film thickness increases. 
In these cases, disorder is observed as a bend of the 
column, which results in the deterioration of image 
quality as can be seen in Fig. 9, where the molecular 
columns are projected along the column axis. The 
disordered states displayed in Fig. 9 and Fig. 10 can be 
considered to result from the lack of kinetic energy for 
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Fig. 12. Schematic representation of the initial state of the crystal 
formation. 

surface diffusion of the molecule necessary for crystal- 
lization on the substrate, because the deposition was 
carried out at room temperature, at which the phthalo- 
cyanine molecule does not have sufficient energy for 
surface diffusion. The process of crystal growth of 
phthalocyanine may be considered as follows. The 
cohesive energy of phthalocyanine molecules due to 
re-electronic interaction is anisotropic and acts more 
strongly to build a molecular column. When the 
column grows to a certain extent, the attractive force 
between columns becomes strong and they condense 
side by side and make a crystal, as illustrated in Fig. 
12. The contrast differences in each molecular image in 
Fig. 9 suggest that the length of the column is not 
constant. The images in Figs. 9 and 10 are obvious 
proofs for the concept that formation of linear crystal, 
molecular column, precedes the formation of three- 
dimensional crystals. 
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A b s t r a c t  

Generalized probability density functions, cumulative 
distribution functions and moments of the normalized 
structure amplitude ILl, depending on space-group 
symmetry of the crystal and on the composition of the 
asymmetric unit, were extended to include the tenth 
moment of ILl and five-term expansions. The formal- 
ism w a s  also simplified and is presented in a concise 
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and unified form. The equations linking the formalism 
to practical problems, the composition and space-group 
terms, are discussed from a practical point of view and 
a convenient implementation of the above statistics in a 
computer program is indicated. The generalized cumu- 
lative distributions of ILl and of the normalized 
intensity z = IEI 2 are compared with corresponding 
distributions based on five published structures, each 
containing one outstandingly heavy atom (Pt, Rh and 
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Br) and about twenty light ones in the asymmetric unit, 
excluding hydrogens. These examples indicate that the 
above formalism is a valuable tool for resolving 
space-group ambiguities which cannot be treated by 
conventional methods because of effects of atomic 
heterogeneity. N(z) distributions for a structure belong- 
ing to the space group Fddd show that the theoretical 
expressions correctly predict the existence of different 
intensity distributions in reflection subsets with hkl all 
even and hkl all odd for this space group. 

Introduction 

Intensity statistics which allow for an arbitrary com- 
position of the asymmetric unit and, formally, any 
space-group symmetry of the crystal have been 
extensively investigated in the 1953-1976 period, 
starting with the studies of Karle & Hauptman (1953) 
and Hauptman & Karle (1953). A review of these and 
subsequent investigations of such statistics was given 
by Srinivasan & Parthasarathy (1976). 

The well established mathematical formalisms, on 
one hand, and the surprising scarcity of their appli- 
cations, on the other, indicated that these powerful 
methods could well be exploited, provided (i) the 
l~ormalisms existing at that time (1976) were made 
more concise and simpler and (ii) a general treatment of 
the space-group dependence of these statistics, or 
results of such a treatment, were available. 

An answer to the second requirement was first 
given by Wilson (1978), who introduced a new 
approach to the statistics of the trigonometric struc- 
ture factor and evaluated the fourth absolute moment 
of this quantity for all the space groups but two, and an 
attempt at reducing the formalisms to readily applic- 
able forms, albeit for triclinic, monoclinic and ortho- 
rhombic symmetries only, was made by the author 
(Shmueli, 1979) and three-term expansions for 
generalized cumulative distributions of the normalized 
structure amplitude I EI were put forward. 

The above two contributions were unified and 
extended to include general expressions for the first four 
moments of the normalized intensity, z = IEI 2, and 
four-term expansions for the probability density and 
cumulative distribution functions of z (Shmueli & 
Wilson, 1981). A considerable conciseness of the 
various expressions was achieved in the above study, 
and a unified character of the quantities pertaining 
to centrosymmetric and noncentrosymmetric space 
groups was first demonstrated (Shmueli & Wilson, 
1981). This reformulation of intensity statistics was 
usefully supplemented by computer algorithms for the 
evaluation of absolute even moments of the trigono- 
metric structure factor, for all space groups (Shmueli & 
Kaldor, 1981). Such algorithms are indispensable for 
obtaining moments higher than the fourth, for space 
groups of higher symmetry. 

During subsequent tests of these statistics it became 
apparent that cases of extreme atomic heterogeneity 
may well require more extensive expansions and the 
results of Shmueli & Wilson (1981) were extended to 
the fifth moment of z and five-term expansions for the 
probability and cumulative distribution functions of this 
quantity. A reexamination of the extended formalism 
showed that it could be further unified, and thereby 
simplified, and the resulting version of these statistics is 
presented in the next section, along with a discussion 
which also includes programming considerations. All 
the mathematical and statistical considerations and 
derivations, which led to the above extension, are given 
in the Appendices to this paper. 

The article is concluded with an application of these 
cumulative distribution functions to five sets of 
h,k,l, IFcl data which were recalculated from solved 
crystal structures, each containing just one heavy atom 
(Pt, Rh or Br) and a relatively small number of light 
ones in the asymmetric unit. Such compositions occur 
frequently in inorganic and organometallic chemistry, 
and are well known to invalidate the conclusions of 
conventional statistical tests, based on the central limit 
theorem, in a variety of space groups. 

One of the examples concerns a structure belonging 
to the space group Fddd which is predicted to give rise 
to different intensity distributions in the hkl-even and 
hkl-odd subsets (Wilson, 1978; Shmueli & Kaldor, 
1981)~ and these predictions are now put to a practical 
test. 

Generalized distributions and moments 

In what follows, a brief but complete summary of the 
equations of symmetry- and composition-dependent 
intensity statistics will be presented. The basic 
approach is the same as that described in detail by 
Shmueli & Wilson (1981) and the present extension 
and simplified notation are based on Appendix A and 
Appendix B to this paper, which deal with a unified 
representation of the general forms of the probability 
density functions of IEI and with the derivation of the 
tenth moment of this quantity in terms of functions of 
composition and space-group symmetry, respectively. 

The formal validity of these generalized statistics is 
restricted by the assumptions that (i) all the atoms 
occupy general positions, (ii) there is no pseudo- 
symmetry or other dependence in the structure, and (iii) 
dispersion is negligible. Similarly to any other statistical 
treatment, a large set of data is desirable in the present 
one. 

After the presentation of the formalism, its links to 
the atomic composition of the asymmetric unit and 
space-group symmetry of the crystal will be discussed 
from a practical point of view and the section will be 
concluded with a programming note on the implemen- 
tation of the above in an easy-to-operate routine for 
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computation of generalized moments and cumulative 
distributions of the normalized intensity, z, or nor- 
malized structure amplitude, I EI. 

The centrosymmetric case 

The expressions for the generalized probability 
density and cumulative distribution functions of lEI are 
given by 

Pc(IEI) = exp 
_ 

× 1 + H2n ~ - ~ ]  + . . .  (1) 

and 

Nc( IEI )=er f  ~ ]  - - ~ e x p  - 

] n A 2k H2k- 1 + . . .  (2) 
X 2k(2k)-------~ ~ V/2] 

and the even moments of I EI are related to the 
expansion coefficients by 

k 
(IEI2k) = %o + Z akpA~p, (3)* 

p=2 

where 

akp= (2p--  1)It (4) 

with (2p - 1)tt = (2p) / (2ppt ) .  
Equations (1), (2) and (3) are completely general, 

but the number of terms in (1) and (2) which can be 
computed depends on the orders of the even moments 
of IEI which have been related to the symmetry and 
composition of the crystal. At present, the fourth, sixth, 
eighth and tenth moments of IEI are available and, 
hence, at most the first five terms of either (1) or (2) can 
be computed. Le. n = 5 in the present paper. 

By comparing the available moments of IEI 
(Shmueli & Wilson, 1981; Appendix B below) with (3), 
we obtain 

A 4 = a 4 Q 4 ,  (5) 

A6 = a6 Q6, (6) 

A 8 = as Qs + 35( A] - 72 Qs), (7) 

Alo = a10 Q10 + 210(A4A6 -- 74 )'6 Q10) + 315072 Ql0 

(8) 

* Equation (3) and its acentric analogue, are obtained by 
evaluating (IEI 2k) = f~ IEI2kp(IEI)dlEL, where P(IEI)is given by 
(1) and (13) respectively. 

with 

k 
a2k = ~ (--1)k-P(k --p)! c% ))2p + (--1)k-l(  k -- 1)I ako 

p = 2  

(9) 

j = l  j 1 

where m is the number of atoms in the asymmetric unit 
and f j , j  = 1,.. . ,  m are their scattering factors, and 

72g= (IJI2g)/(IJI2) k, (11) 

where 

J ( h ) =  Y. expt2nihr(Ps r + ts)] (12) 
$ 

is the trigonometric structure factor (Wilson, 1978; 
Shmueli & Wilson, 1981; Shmueli & Kaldor, 1981). 

Equations (1) and (2) with n = 4, except for a 
change of the variable from z to IEI, are equivalent to 
equations (1) and (5) of Shmueli & Wilson (1981). The 
main features of the present extension are the 
derivation of the tenth moment of IEI which leads to 
(8) and, consequently, to another term in each of (1) 
and (2), and the introduction of the akp constants 
(equation 4) which considerably simplify the 
formalism. 

The noncentrosymmetric case ; 

The expressions for the generalized prob~ibility 
density and cumulative distribution functions of IE1 are 
given for this case by 

Pa(IEI) = 21El exp(--IEI z) 

x + k! Lk(IEI + . . .  (13) 
k=2 

and 

Na(IEI ) = 1 - exp(-IEI  2) + exp(-IEI  ~) 

{ ~ 2  ( -1)k  B2k × k! [Lk-I(IEI2) 

-- Lk(IEI2)] + . . . ] ,  (14) 
/ 

respectively, and are equivalent to equations (6) and 
(10) of Shmueli & Wilson (1981) for n = 4. 

Equations (3)-(12) apply to the noncentrosym- 
metric case subject to the following replacements: the 
coefficients B2k replace A2k in (3), (5), (6), (7) and (8), 
the constants akp appearing in (3) and (9) are redefined 
as 

akp= ~ (15) 



URI SHMUELI 365 

for the noncentrosymmetric case, and the constants 35, 
210 and 3150 appearing in (7) and (8) are replaced by 
18, 100 and 900 respectively. 

The above equations for probability density and 
cumulative distribution functions can be reexpressed in 
terms of the normalized intensity z by making use of 
the relation 

P(IEI) = 21EIP(z) (16) 

(e.g. Shmueli & Wilson, 1981) and noting that z = IEI 2. 
In order to obtain the corresponding_expressions for 
N(z), it is enough to replace I EI by V/Z, throughout the 
right hand side of (2) and (14). 

The Hermite and Laguerre polynomials appearing in 
(1), (2) and (13), (14) respectively are defined and 
tabulated in mathematical handbooks (e.g. Ab- 
ramowitz & Stegun, 1972). Their explicit forms are also 
reconsidered in Appendix A which leads to the 
introduction of (4) and (15), resulting in the unified 
presentation given above. It can be noted that (4) and 
(15) can also be unified to 

akp = (p) (IEl2k>t°)/(IEl2P> (°) (I 7) 

where (IEI2k> (°), the ideal 2kth moment of IEI, equals 
(2k - 1)!! = 1 x 3 x ... x (2k - 1) and k! for the 
centric and acentric case respectively (el Appendix A). 

The identical functional forms of the coefficients A 2k 
and B2k, pointed out by Shmueli & Wilson (1981) for k 
= 2, 3 and 4, and confirmed in Appendix B for k = 5, 
are thus a general feature of these expansions, at least 
as far as their dependence on the even moments of I EI 
is concerned. 

In order to compute these statistics, their appro- 
priate dependence on atomic composition and space- 
group symmetry must be evaluated from (10) and (11) 
respectively. Considering the composition terms, it 
must be pointed out that their dependence on sin 0/2 
should be accounted for when X-ray or electron 
diffraction data are being treated. This may seem an 
unnecessary precaution, since the angular dependence 
of Q2t, (10) is often rather weak (it is absent when all 
the atoms are the same). However, numerical tests 
show that, in cases of strong heterogeneity, a replace- 
ment of scattering factors by corresponding atomic 
numbers may lead to poor approximation. 

A convenient way of evaluating the Q2k term is to 
take its weighted average over the sin 2 0/22 ranges, used 
in a previous construction of the Wilson plot, the 
weight of a range being related to the number of 
reflections this range (or shell) contains. 

It was pointed out to the author by Professor Wilson 
(Wilson, 1980) that the neglect of dispersion, which 
leads to the simple form of the composition terms 
[equation (10); equation (18) of Shmueli & Wilson, 
1981 ], may be less justified for electron diffraction than 

for X-ray data. For neutron diffraction data, (10) can 
be evaluated as it stands, with the fSs replaced by the 
appropriate neutron scattering cross sections of the 
atoms. 

The space-group term (11) requires the knowledge of 
even absolute moments of the trigonometric structure 
factor for the space group under consideration. In order 
to evaluate (1), (2), (13) and (14) with all the five terms 
for which moments of IEI are available, the ratios 74, 
76, ~8 and Y,0 are required. For triclinic, monoclinic and 
orthorhombic space groups, except Fdd2 and Fddd, the 
trigonometric structure factors are simple enough to 
give concise closed expressions from which )'2k, for any 
k, can be evaluated. 

For example, the trigonometric structure factor for 
space groups based on the point group mm2 has the 
form 

J = A  + iB (18) 

where 

A = 4l' cos 2zchx cos 2nky cos 2zdz (19) 

B = 4l' cos 2zchx cos 2nky sin 2rdz (20) 

(International Tables for X-ray Crystallography, 
1952) and l' takes on the values 1, 2 or 4 according as 
the unit cell is primitive, base or body centered or face 
centered respectively. 

We thus have 

(IJI 2k > = (4l') 2k (cos 2k 2~rhx cos 2k 2zrky) (21) 

since (IJI 2k> = ((A 2 + B2)k>. For the case of atoms in 
general positions and a large set of hkl's, hx and ky or, 
more accurately, their fractional parts are uniformly 
distributed in the (0,1) range and since independence 
was also assumed, we can replace (21) by 

(IJI 2k) = (4l') 2k (cos 2k a) 2 (22) 

= (41')2k (2k)tt  J ' (23 )  

where (2k)l! = 2kk! (Abramowitz & Stegun, 1972). 
Since the second absolute moment of IJI is 4l' (cf. 
Wilson, 1978) and since only the fraction 1/l' of the 
reflections has non-zero J's, we have 

)'2k = l , , - ,  [ ( 2 k -  1)"]  2 
kt (24) 

for these space groups. The )'2k's for the above 
mentioned space groups, derived as above, are presen- 
ted in Table 1. 

Direct averaging by the above or a related method 
becomes much too cumbersome when the number of 
triple sine/cosine products in A or B exceeds two, and 
the moments of IJI can then be obtained with the aid of 
computer algorithms. Such methods were developed by 
Shmueli & Kaldor (1981) and were applied to the 
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Table 1. Expressions for ?'2k (14) for the triclinic 
monoclinic and orthorhombic space groups except Fdd2 

and Fddd 

The moment ratios T2k are expressed in terms of M k, where 

(2k)! ( 2 k -  1)!! 
M k - - - - - -  

2k(k!) 2 k! 

and l', which takes on the values l, 2 or 4 according as the 
Bravais lattice is of type P, one of the types A, B, C or I, or type F 
respectively. The expressions for )'2k are identical for all the space 
groups based on a given point group, with the two exceptions 
mentioned above. The expressions are valid for general reflections 
and under the restrictions given in the text. 

Point group(s) Expression for ~2k 

i, 1 

i, 2, m l ' k - l  Mk 

2/m, mm2 l' k- 1 M~ 

mrnm .l,k- i M3k 

222 ~ (Mk_ p Mpy 

p=O 

computation of ?'4 and ?'e for all the space groups and 
all the hkl subsets giving rise to different functional 
forms of J within the same space group. Only general 
hkl subsets were treated. It should be noted that ?'4 and 
7'6 are denoted by q/p2 and rip 3 respectively in Table 1 
of Shmueli & Kaldor (1981). Similar computations of 
the eighth moment of IJI are in progress and will be 
reported elsewhere. 

The equations of generalized intensity statistics, 
presented in this section, were implemented in a 
Fortran program which computes the fourth and sixth 
moments of I EI and evaluates cumulative distributions 
for a given composition of the asymmetric unit and two 
possible space groups of the crystal. Most of the input 
to this program can be copied directly from a routine 
which scales the data and computes IEI values. This 
can be made more expedient if the program is linked, 
via a file transfer, to the scaling and normalizing 
routine. The local version of program NORMAL 
(MULTAN 78, Main, Hull, Lessinger, Germain, 
Declercq & Woolfson, 1978) was modified to provide 
for such a transfer, which also includes some relevant 
experimental statistics computed by NORMAL. The 
problem-specific input to the intensity statistics pro- 
gram INSTAT was thus reduced to two space-group 
labels and the corresponding values of Y2k which are 
available or required. The examples presented in the 
next section were evaluated with the aid of the above 
procedure. 

Applications to solved structures 

The formalism summarized in the previous section was 
applied to several hypothetical as well as real examples. 
The former were based on a computer simulation of the 

heavy-atom problem, which afforded a possibility of 
examining various aspects of the theory such as 
dependence of the result on the number of expansion 
terms used, a comparison of Gram-Charlier and 
Edgeworth arrangements of the expansion (cf. Shmueli 
& Wilson, 1981) and more. These computer experi- 
ments were briefly mentioned elsewhere (Shmueli, 
1981; Shmueli, Kaldor & Wilson, 1981) and will be 
published separately. In this section cumulative distri- 
butions of I EI and z, recalculated from published 
crystal data and atomic parameters, will be presented 
along with the relevant theoretical distributions. For 
each of the examples to be given, an independent set of 
h,k,l, IFcl data was generated, with sin 0/2 < 0.65, 
starting from published unit-cell dimensions, Laue 
group and the atomic parameters, positional and 
thermal. Such a set was then input to program 
NORMAL and was treated as a routine F o data set for 
which the I EI values and the experimental statistics 
[moments of IEI, N(z) and N(IEI) distributions] are to 
be computed. The relevant results were then trans- 
ferred to the input of the program, mentioned at the end 
of the previous section and, unless otherwise stated, 
five-term expansions for N(IEI) or N(z) were evaluated 
using (2) and (14), and the definitions of the expansion 
coefficients given above. These expansions were then 
compared with the cumulative distributions recal- 
culated from the published structures and with the ideal 
centric and acentric N(z) or N(IEI) (Howells, Phillips 
& Rogers, 1950; Srinivasan & Parthasarathy, 1976). 

The main criteria for the choice of examples were (i) 
outstanding heterogeneity of atomic composition of the 
asymmetric unit (i.e. just one heavy atom and not too 
many light ones), (ii) all the atoms in general positions, 
and (iii) no obvious hypersymmetry in the structure. 
Five such examples were readily located in two or three 
subsequent issues of the Journal of Inorganic 
Chemistry and, in fact, many more good examples were 
omitted. In one case at least, criterion (iii) was not 
satisfied but the effect of the hypersymmetry present 
did not preclude a meaningful test of the theory. 

These cumulative distributions are presented in Figs_. 
1, 2 and 3. Fig. 1 shows three examples for solved P1 
structures, Fig. 2 deals with a C2/c vs Cc example 
(C2/c being the correct space group) and Fig. 3 
displays a property which is characteristic of some 
space groups of higher symmetry, namely different 
intensity distributions for two or more hkl subsets 
within the same space group. Many space groups lead 
to different functional forms of the trigonometric 
structure factor for the various hkl subsets, but only 
some of these lead to different numerical values of the 
moments of IJI which determine the probability 
distribution and related statistics. The example in Fig. 3 
concerns the space group Fddd for which different 
distributions of the even and odd hkl subsets are 
predicted (cf. Wilson, 1978; Shmueli & Kaldor, 1981). 
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Fig. 1. N(IEI) cumulative distril~utions for solved triclinic hetero- 
geneous structures. The solid curves are the ideal centric (C) and 
acentric (A) distributions, the dashed curves are five-term 
expansions evaluated from equations (2) and (14) for the space 
group indicated and the crosses represent the N(IEI) values 
recalculated from the published structures as described in the 
text. (a) Asymmetric unit: CTH13C1N402Pt, space group P[ with 
Z = 2 (Faggiani, Lippert & Lock, 1980). (b) Asymmetric unit: 
C6HIsClzN404Pt, space group P[ with Z = 2 (Faggiani et al., 
1980). (c) Asymmetric unit: CloHz0OsRh, space group P[ with 
Z = 2 (Cotton & Felthouse, 1980). 

The chemical formulae of the asymmetric units and 
the reti~rences to the articles from which the structures 
were taken appear in the figure legends. The positions of 
hydrogen atoms were not available for any of these 
structures and their neglect here is probably quite 
unimportant. However, the H's are included in the 
formulae, as given in the original papers. 

The N(IEI) tests for the two centrosymmetric 
triclinic platinum complexes [Figs. 1 (a) and (b)] show a 
good agreement between the statistics based on the 
published structures and the centrosymmetric N(IEI) 
curve computed from (2). However, this agreement is 
of some use only in the range of IEI values not 
exceeding 0.7, since the separation between the PI  and 
P l  theoretical curves becomes too small for higher 
values of IEI. In general, the deviation of the P1 curve 
from the ideal acentric N(IEI) is bound to be smaller 
than the deviation of the theoretical P[  from the ideal 
centric cumulative distribution. This is because the 
asymmetric unit of the noncentrosymmetric space 
group is necessarily twice as large as that for the 
centrosymmetric one, when the test is to indicate the 
presence or absence of a center of symmetry only. 
Thus, the asymmetric unit of P1 in Figs. l (a)  and (b) 
contains two platinum atoms and twice the number of 
light atoms, the heterogeneity is thereby decreased and, 
consequently, the departure from the ideal statistics 
becomes smaller. It is interesting to note that the 
P i - P 1  separation is somewhat greater in Fig. 1 (b) than 
in Fig. 1 (a), showing the effect of an additional chlorine 
on the decrease of heterogeneity. 

The results for the triclinic rhodium compound (Fig. 
lc) show a much better discrimination between P1 and 
P [  cumulative distributions for this level of hetero- 

N(IEI) / +  

0.5 I.O 
IEI 

Fig. 2. A generalized N(IEI) test for a solved monoclinic 
heterogeneous structure. The meaning of graphs and symbols is 
the same as in Fig. 1. Asymmetric unit: C2zH~sOjPPt, space 
group C2/c with Z = 8 (Koie, Shinoda, Saito, Fitzgerald & 
Pierpont, 1980). 
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geneity. The agreement between the recalculated 
N(IEI) and that obtained for P [  is worse than that for 
the two platinum compounds above but not harmfully 
so, since the recalculated N(IEI) is displaced to the 
centric side of the P i  curve. This may be due to some 
hypersymmetry which I failed to recognize or to the 
neglect of the R h - R h  correlations (in the chemical 
molecule an R h - R h  bond is bisected by a center of 

05  

/ / (four terms) 

~ 1  I I I I I 1 l I (a)l 

N(z) 

0.5 

Fddd- h,k,I even 
( four terms ) + +~ -~_~D- + 

/ (b) 

N(z) 

N(z) [ 

0.5 ~ +  

~~~+~~Fddd- h,k,I odd 
/ ~  (f our t erm~) 

I I I I I I I I I I 

0.5 1.0 
z 

Fig. 3: N(z) distributions in the space group Fddd. The solid curves 
are the conventional N(z) distributions, the dashed curves are 
four-term expansions, calculated from equation (2) and the 
crosses represent the N(z) values recalculated from the structure 
as described in the text. The asymmetric unit is C4H 14BgBrO2 and 
the space group is Fddd with Z = 32 (Leonowicz & Scholer, 
1980). (a) All recalculated IFcl's; (b) IFcl's with h, k and l even 
only; and (c) IFcl's with h, k and l odd only. 

symmetry of PJ)  which are also suggested by the 
somewhat wavy Wilson plot (cf. Wilson, 1981). 

A much milder space-group dependence, and a good 
overall agreement is seen in the N(IEI) test for the 
monoclinic platinum compound (Fig. 2). 

Three N(z) distributions are presented for the Fddd 
example (Fig. 3). Only four-term N(z) expansions were 
evaluated since the available algorithms were not yet 
programmed for a general computation of the tenth 
moment of IJI, when this paper was written. However, 
this accuracy of the expansion should most probably 
suffice for the moderate heterogeneity of the structure 
examined (one bromine and fifteen light non-H atoms). 
Fig. 3(a) is based on the full independent set of 
IFc(hkl)l's and the theoretical distribution was com- 

puted using average values of )14, )16 and )18 {t2k = 
½[)12k(even) + Y2k(Odd)] }. The recalculated N(z) in Fig. 
3(b) rests on the IFcl's for which h, k and l are even 
while that in Fig. 3 (0  was obtained from the IFcl's for 
which h, k and l are odd. 

The existence of two different intensity distributions, 
in the recalculated diffraction pattern for this example, 
is evident. The recalculated N(z) distributions follow 
the theoretical ones quite well but in all three eases 
(Figs. 3a, b and e) the recalculated distributions are 
displaced to the centric or hypercentric side, possibly 
because of the non-crystallographic mirror plane in the 
molecule (Leonowicz & Scholer, 1980), and the fact 
that bromine is located in this pseudo mirror plane or 
very close to it. The actual agreement between the 
recalculated and predicted N(z) distributions is quite 
good for the hkl-even and all-data sets, the dis- 
crepancy being largest for the hkl-odd subset. 

The values of Y2k, used in the above examples, are 
listed in Table 2. 

I t  is impor tant  to point out that the correct values of 
Y2k as published (Shmueli & Kaldor, 1981) or given in 
Table 1 must be divided, for the purpose of com- 
parison with conventional ideal distributions, by l 'k-l, 
where l' is the lattice multiplicity (el Table 1 and 
derivation above). 

The examples presented in this section clearly 
indicate that generalized intensity statistics, such as 
those derived by Shmueli & Wilson (1981) and further 
extended in this paper, are of a definite practical 
importance and may often reduce the amount of trial 

P1 
Pi 
Cc 
C2/c 
Fddd 

Table 2. Values 0 f  )12 k used in examples 

74 76 7s 710 
1 1 1 1 
1.50 2.50 4.375 7.875 
1.50 2.50 4.375 7.875 
2.25 6.25 19 .141  62.015 
3.375 15 .625  83.740 - 
1.875 4.375 11-553 - 
2.625 10 47.647 - 

(hkl even) 
(hkl odd) 
(average) 
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and error involved in the preliminary but crucially 
important stage of structure determination, the deter- 
mination of the space group. 

Other statistics, such as P(IEI) functions (equations 
1 and 13) and even moments of IEI can also be readily 
computed and may provide complementary or support- 
ing evidence to that obtained from the cumulative 
distributions. Of these two, the P(IEI) functions are 
certainly superior and probably the most meaningful of 
all statistical tests, as they contain all the information 
on the distributions. However, the P(IEI) curves often 
have a rather irregular appearance and it is thus easier 
(not safer!) to examine the cumulative distributions in 
which the irregularities in the observed probability 
density function are efficiently smoothed out by the 
integration which leads from P(IEI) to N(IEI). 

I wish to thank Professor A. J. C. Wilson for his 
continuing interest in my work on intensity statistics 
and for the interesting, stimulating and encouraging 
correspondence. I am also grateful to him for letting me 
read his paper on intensity statistics and stereo- 
chemistry prior to its publication. 

A P P E N D I X  A 
Expansion coefficients and moments of lEI 

A formal derivation of the functional forms of the 
generalized probability density functions of IEI 
(equations 1 and 13) can be found, subject to change of 
variable and notation, in Cram6r's introduction to the 
theory of such expansions (Cram6r, 1951, § 12.6). In 
fact, the first two examples to the above named section 
show that the 'ideal' Wilson-type (Wilson, 1949) 
probability functions for the centric and acentric 
distributions serve as weight functions in the ortho- 
gonality relationships involving Hermite and Laguerre 
polynomials, and this leads directly to the functional 
form of the equations given by Shmueli & Wilson 
(1981) and other authors who rederived these 
equations (Karle & Hauptman, 1953; Hauptman & 
Karle, 1953; Bertaut, 1955; Klug, 1958; Srinivasan & 
Parthasarathy, 1976). Another derivation seems un- 
necessary but the functional forms of the problem- 
dependent expansion coefficients appearing in (1) and 
(13) deserve a reconsideration in view of the common 
statistical significance of these equations. 

Making use of Cram6r's examples and his equation 
(12.6.3) (Cram6r, 1951), the formal expressions for the 
probability density functions of IEI can be written as 

oo 

Pc(IEI) =P~°)(IEI) 1 + Z (HeEk(IEI)> 
k=2  

X He2k(lE[)/(2k )[] (A I) 

(cf. Klug, 1958) and ' 

Pa(IEI) =Pa(°)(IEI) 1 + ~ (Lk(IEl~)>Lk(IEI 2 (A2) 
k = 2  

for the centrosymmetric and noncentrosymmetric 
space groups respectively, where P~°)(IEI) and 
P~°~(IEI) are the ideal centric and acentric probability 
density functions of IEf respectively, based on Wilson's 
(1949) application of the central limit theorem, 
He2k(IEI) is an even-order Hermite polynomial and 
Lk(IEI 2) is a Laguerre polynomial. The dependence on 
space-group symmetry and atomic composition is 
contained in the averages (He2k> and (L~) and these, 
in turn, are linear combinations of even moments of 
IEI, for the first few of which this dependence has been 
explicitly worked out (cf. Shmueli & Wilson, 1981; 
Appendix B below). The numerical coefficients of these 
linear combinations must depend on the ideal moments 
of IEI (cf. Cram6r, 1951), i.e. moments of the ideal 
centric and acentric distributions, and a reexamination 
of the explicit expressions for He2k(x) and Lk(x2), 
which contain these coefficients by definition, may 
reveal what is left of the rather complicated dependence 
of these polynomials on the ideal moments of their 
variables [Cram6r, 1951, equation (12.6.1)]. 

In Table 22.3 of Abramowitz & Stegun (1972), we 
find 

k (2k)! 
He2k(X)= ~ (--1) m x 2(k-m). (A3) 

m=o m[ 2m(2k-  2m)[ 

Now, (IEI2p> ¢°) = (2p -- 1)!t is the value of the 2pth 
ideal centric moment of I EI and the coefficients in (A 3) 
can be rewritten in terms of such double factorials by 
noting that 

(2k ) l= [1  × 3  x . . . x  ( 2 k - 1 ) ] 2  kk[ 

= ( 2 k -  1)!! 2 k kT, (A4) 

with the understanding that (2k - 1)!! equals unity for 
k = 0. We thus obtain 

(m 1,, He2k(x) = Y (--1) m x2(k-rn) 
m=0 ( 2 k -  2m - 1)![ 

(A5) 

and upon changing the index of summation from m to 
p = k - m, the explicit expression for Hezk(X ) becomes 

He2k(X) ~ (--1)k-P (~)  ( 2 k -  1)!! = x 2p. (A6) 
p=o ( 2 p -  1)!! 

The required Laguerre polynomials are given by 
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(e.g. Abramowitz & Stegun, 1972). Upon dividing and 
multiplying (A7) by (--1)kk!, and noting that ( -1)  k+v 
= (-1)  k-u, we have 

1 I, [ k \  k! 
Lk(X 2) -- ~-" (--1) k-p [ ; )  - -  X zp. ( a 8 )  

(--1) k k~ p~ 
p = 0  

Since the 2kth ideal acentric moment of I EI is given by 
(IEI 2k)~m = k!, the summations in (A6) and (A8) have 
identical functional forms, as far as their dependence on 
the ideal moments of IEI is concerned. The averages of 
He2k and L k in (A 1) and (A2) can thus be written as 

k 

(He2k(IEI))  = ~ (--1) k-v akv(IEI2P ) (A9) 
p = 0  

and 

1 k 

% ( i E I  >, (A10) (Lk(IEI2)) -- (--1) kk! Z (--1)k-v 2v 
p = 0  

where 

and 

akp = (;)(IEI2k)(°)/(,IEI2V) ((°) (Al l )  

(IE[2k)(°) = ({(2k 1)! t, l if centric 
(A12) 

if acentric. 

For computational purposes, the Hermite polynomials 
H,(x)  related to He2k(X) by 

H2k = 2 k Hezk(X) (A 13) 

(Abramowitz & Stegun, 1972) were found to be more 
convenient since more extensive tabulations exist for 
H,(x). 

Substitution of (A9) and (A 13) into (A 1) leads to (1), 
and (13) is obtained by inserting (A 10) into (A2). 

The quantities akp, given by (A 1 l) and (A 12), also 
happen (?) to appear in the expressions for the 
non-ideal moments of IEI in terms of the space-group 
symmetry and composition of the crystal (see Appen- 
dix B). Their introduction here may or may not be of 
theoretical interest but it certainly is of practical value: 
the number of numerical constants which had to be 
given along with the first five terms of (1) and (13) was 
reduced from 26 to six only, by making akp a part of the 
formalism. 

APPENDIX B 
Extension of the generalized statlstles 

In this Appendix the derivation of the tenth moment of 
IEI will be described and some considerations which 
contribute to the simplification of the formalism will be 

presented. Full details of the derivations of the fourth, 
sixth and eighth moments were given by Shmueli & 
Wilson (1981) and the present derivation follows 
similar lines. However, the algebra required for an 
additional even moment is more tedious than that 
needed for all the available ones and the detailed 
derivation, which was simplified to some extent by a 
summation convention similar to that of Foster & 
Hargreaves (1963), has been deposited.t 

The tenth moment of the structure amplitude IFI (or 
the fifth moment of the reduced intensity FF*) is given 
by 

( I F l l 0 )  = Z Z .. '  Z Z (W., W*.2 "'" W,~ W.,0), (B1) 
rll 112 r19 nlo 

where 

w. - -  f . J . ,  (B2) 

f .  and J .  being the scattering factor and the trigono- 
metric structure factor of the nth atom respectively (el  
Shmueli & Wilson, 1981). According to the statistical 
properties of the trigonometric structure factor (Wil- 
son, 1978), the non-vanishing terms in (B1) must be 
products of even moments of I w[ (e.g. (I w l 4) (i w t z) 
(Iw12)(Iw12), and (Iw16)(Iw12)(Iw12), etc.). (B1) 
thus splits up into a series of multiple summations, each 
involving one kind of such product, and a single sum of 
the tenth moments of I wl. The multiplicities of these 
partial summations differ for the centrosymmetric and 
noncentrosymmetric space groups and can be 
evaluated by direct counting, by elementary com- 
binatorics, or by solving the corresponding partition 
problem of combinatorial analysis (e.g. Abramowitz & 
Stegun, 1972). The second approach, adopted here, is 
illustrated below. 

Suppose we wish to find the number of different 
ways in which 2n indices In = 5 in (B1)] can be 
contracted into a group of 2k indices and n - k groups 
of two indices each, to give the product 

(iwl 2k) (iw12)... (Iw12)  (B3) 
n - k~erms 

The number of different ways in which 2n - 2k indices 
can be contracted into n - k pairs is (2n - 2k - 1)!t 
and (n - k)t in the centrosymmetric and noncentro- 
symmetric case respectively (Shmueli & Wilson, 1981). 
We further recall that any even-numbered group of 
indices can be contracted to give a non-zero moment of 
I wl in the centrosymmetric case, since then J = J* 
(Wilson, 1978), while in the noncentrosymmetric case 
each such group must contain equal numbers of indices 

~" This material, entitled The Derivation of the Tenth Moment has 
been deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 36631 (13 pp.). Copies may 
be obtained through The Executive Secretary, International Union 
of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 
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appended to w's and to w*'s in (B1) or analogous 
expressions. It follows that the multiplicity of a 
summation of products given by (B3) is 

2k) ( 2 n -  
2 

(B4) 

and 

(:) (:)" ( n - k ) !  = (B5) 

for centrosymmetric and noncentrosymmetric space 
groups respectively. The products (I w l 4 > (Iwl 4 > (Iwl 2 > 
and (Iw16>(Iw14> are treated directly by similar 
considerations. 

It is interesting to note that these multiplicities have 
the same forms as the coefficients a,, k in the Hermite 
and Laguerre polynomials arrived at in Appendix A [cf 
(A 6) and (A 7)] and this fact accounts for the functional 
form of equations (5)--(9). 

Next, the various partial summations, to which 
appropriate multiplicities have been assigned, are 
decomposed into a combination of single summations 
and their products. This process, rather simple for 
low-order moments, becomes the labour-determining 
step in the derivation of higher moments, and simplified 
summation conventions are almost essential. 

Assuming that all the atoms are located in general 
positions and dispersion is negligible, these single 
summations are simplified exactly as shown elsewhere 
(Shmueli & Wilson, 1981) and the tenth moment of ILl 
(or any other even moment) is obtained from the 
relation 

<IEI 2k) = (IFI2k)/(IFI2) k. (B6) 

The expansion coefficients A2k or B2k [cf. (1) and (13)] 
as functions of moments of the trigonometric structure 
factor and atomic composition are then obtained by 
comparing (3), or the acentric analogue, with the 
moments given by (B6), the derivation of which was 
outlined above and is described in detail in the 
deposited material. 

The result for the new coefficients is 

A 10 or Bi0 = hQi o + W()'4 - 0 ; 2 0 )  ( ) ' 6  - -  0;32 )'4 + 20;30) 

x Q, 06, (B7) 

where 

h = Y10 - 0;54 )'8 + 2a53 )'6 -- 60~42 )'4 + 24a50- W)'4 )'6 

+ 2v)'L (88) 

W and V being 210 and 1575 or 100 and 450 for 
centrosymmetric or noncentrosymmetric space groups 
respectively, and Q2k and )'2k are defined by (10) and 
(l l) .  
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